Neutral Variations Cause Bloat in Linear GP
نویسندگان
چکیده
In this contribution we investigate the influence of different variation effects on the growth of code. A mutation-based variant of linear GP is applied that operates with minimum structural step sizes. Results show that neutral variations are a direct cause for (and not only a result of) the emergence and the growth of intron code. The influence of non-neutral variations has been found to be considerably smaller. Neutral variations turned out to be beneficial by solving two classification problems more successfully.
منابع مشابه
Improving Generalization Ability of Genetic Programming: Comparative Study
In the field of empirical modeling using Genetic Programming (GP), it is important to evolve solution with good generalization ability. Generalization ability of GP solutions get affected by two important issues: bloat and over-fitting. Bloat is uncontrolled growth of code without any gain in fitness and important issue in GP. We surveyed and classified existing literature related to different ...
متن کاملGP and Bloat: Absorbing boundaries and spatial structures
This paper examines the behaviour of bloat for GP tree structures using three different topologies: a panmictic, ring and star structure. Initially genetic drift is examined and the results showing the influence of a lower absorbing boundary are examined for each space. A simple selection model is then applied and analysed for bloat. A conjecture regarding the influence of inbreeding, due to sp...
متن کاملGenetic program based data mining of fuzzy decision trees and methods of improving convergence and reducing bloat
A data mining procedure for automatic determination of fuzzy decision tree structure using a genetic program (GP) is discussed. A GP is an algorithm that evolves other algorithms or mathematical expressions. Innovative methods for accelerating convergence of the data mining procedure and reducing bloat are given. In genetic programming, bloat refers to excessive tree growth. It has been observe...
متن کاملThe Role of Syntactic and Semantic Locality of Crossover in Genetic Programming
This paper investigates the role of syntactic locality and semantic locality of crossover in Genetic Programming (GP). First we propose a novel crossover using syntactic locality, Syntactic Similarity based Crossover (SySC). We test this crossover on a number of real-valued symbolic regression problems. A comparison is undertaken with Standard Crossover (SC), and a recently proposed crossover f...
متن کاملPopulation Sizing for Genetic Programming Based Upon Decision Making
This paper derives a population sizing relationship for genetic programming (GP). Following the population-sizing derivation for genetic algorithms in Goldberg, Deb, and Clark (1992), it considers building block decision making as a key facet. The analysis yields a GP-unique relationship because it has to account for bloat and for the fact that GP solutions often use subsolutions multiple times...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003